
RIAD-A166 228 VORONOI DIAGRAMS ON THE SURFACE OF A POLYHEDRON(U) i/i
MRRYLAND UNIV COLLEGE PARK CENTER FOR AUTOMATION
RESEARCH D N MOUNT MAY 85 CAR-TR-121 AFOSR-TR-86-944

UNCLASSIFIED F49620-83-C-8882 F/G t2/i NLEI/IIIEEEE/IEI
EEEEEIIEEEEE

I v'I

s116

MlIROCOPY RESOLUTION TEST CHART
NATIONAL SIUAtU OF STANDADS - iSS- A

li

'!.
-

.

nn rs1U v

-TiR. 86"0044

t71

CAR-TR-121 F-40620-83-C-0082
- . CS-TR-1496 May 1985 0"'

NVORONOI DLGRAIS ON THE SURFACE OF A
POLYHEDRON

CD David M. Mount
to Department of Computer Science

University of Maryland
College Park, MD 20742

-'

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
%ECTEAPR I W AtPrOV~d forViblle lao

dfat18rtbutjon u.., jr:1 te.

ftm UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

0Q
CAR-TR-121 F-49020-83-C-0082
CS-TR-1496 May 1985

VORONOI DIAGRAMS ON THE SURFACE OF A
POLY1HEDRON

David M. Mount

Department of Computer Science
University of Maryland D T IC
College Park, MD 20742 4ZLECTE

-We present an al!6rlthm that computes e Voronol diagram of a set of
points lying on the srface of a possibly nonco vex polyhedron. Distances are
measured In the Eufnidean metric along the surfa e of the polyhedron. The algo-
rithm runs In 0(n log n) time and requires O(n) space to store the final data
structure, where n Is the maximum of the number of edges and source points on
the polyhedron. This algorithm generalizes or Improves the running times of a
number of shortest path problems both on polyhedra and In the plane amidst po-

lygonal obstacles. By applying standard algorithms for point location, we can
determine the distance from a query point to the nearest source in 0(log n) time
and can list the shortest path In O(k + log n) time, where k Is the number of
faces traversed by the path. The algorithm achieves Its efficiency by a novel
method of searching the polyhedron's surface.

AIR llt OOIOW-1 07sIe21SM0I l (AM.)

This toobto v oport b9 boO teid is

approved for'Ps"-1 It o --'168e UW AY l91>420

Vistributiotl 19.4 -xGiXt#*A
AsT T o 1.

I f .
€loiet, feelbles ale~te vre

The support of the Air Force Office of Scientific Research under Contract
F-49620-83-C-0082 is gratefully acknowledged.

IAp wdVA ing pub&* redsm4A

1. Introduction

Because of its application to robotics and terrain navigation, there is interest in

efficient algorithms for finding shortest paths amidst obstacles in both 2 and 3 dimen-

sions. An O(n2 log n) algorithm is known for finding shortest paths between points on a

plane amidst polygonal obstacles by constructing the visibility graph [LW79, Le8, SS84],

and O(n log n) is attainable in special cases when shortest paths possess certain mono-

tonicity properties [LPS4, SS84]. Sharir and Schorr present an 0(nlog n) algorithm for

finding shortest paths on convex polyhedra [SS841, which was subsequently improved to

O(n2 log n) Mo84]. O'Rourke, Suri and Booth give an O(n') algorithm for finding shor-

tept,,patIbetween a pair of points on the surface of a nonconvex polyhedron where the

,0th49le 0 the surface of the polyhedron [OS84I.
.,7N

- " eireseht,,n algorithm which when given a possibly nonconvex polyhedron and a

source points on the surface of the polyhedron, partitions each face of

the polyhedrlYato Voronoi cells. A point x is a member of a Voronoi cell for a given

souki s if the Euclidean distance from s to x measured along the surface of the

polyhedron is not greater than the distance from any other source. In fact, our algo-

rithm produces a refinement of the Voronoi diagram from which the actual shortest path

can easily be determined. This generalizes and improves on the results of O'Rourke,

Suri and Booth. Notice this measure of distance may not be the shortest distance in 3-

space, since we are constrained to travel along the surface of the polyhedron. However,

this form of the shortest path problem is of interest in terrain navigation, where a mov-

ing vehicle is bound move along a surface that could be modeled by a polyhedron. An

O(n2 log n) algorithm for the single source shortest path problem appears in a companion

paper M85].

.The running time of our algorithm is O(n2 log n) where n is the maximum of the

number of polyhedron edges and source points. (Typically the number of source points

will be small relative to the size of the polyhedron.) The output of the program can be

stored ip O(n2) space. With the aid of standard algorithms for point location [Ki83,

PrSl, Co83], distance queries can be answered in 0(log n) time, and the shortest path

can be listed in 0(k + log n) time, where k is the number of faces traversed by the path.

A polyhedron is considered to be a set of simple polygonal faces and an adjacency

relation that connects a pair of faces .through a common edge. Each edge is incident on

exactly two faces. Note that the angle formed between adjacent faces is of no relevance

to surface distances, and hence need not be specified. The generalization of the algo-

rithm to unbounded faces is straightforward, but not discussed here. We do not require

that the polyhedron is realizable as a rigid object in 3-space, or even that the polyhedron

01'b4 fltb4"1;0 !## .t eurace. For the expected domain of the problem, for

I I F I'

2

example CAD representations of 3-dimensional objects, the genus of the polyhedron is

typically much less than linear in the number of its vertices. In this case, it follows form

Euler's formula that the number of edges In the polyhedron is linear in the number of

vertices.

The problem of finding shortest paths on the plane while avoiding polygonal obsta-

cles can be reduced to the problem of finding shortest paths on a polyhedron by parti-

tioning the plane into polygons and replacing obstacle boundaries by sufficiently high

vertical faces. Hence, our algorithm generalizes the results of [LES, SS84] for planar

shortest paths. However, our algorithm is sufficiently complex that it would not be

recommended as a practical solution to this problem.

Our algorithm is a generalization of the techniques used by Sharir and Schorr

[SS84] called slices, which we generalize in Section 3 by defining wedges. Sharir and

Schorr's method in turn is a generalization of Dijkstra's algorithm for finding shortest

paths in graphs (AH74]. The faces of the polyhedron are analogous to the vertices of the

graph in Dijkstra's algorithm, but unlike Dijkstra's algorithm, the distance to a given

face is not a unique scalar. The purpose of a wedge is to define a region of a face within

which the shortest paths have the same discrete properties, that is, they originate from

the same source and traverse the same sequence of edges and vertices.

A straightforward generalization of Sharir and Schorr's or Mount's algorithm for

convex polyhedra leads to an O(n3) algorithm in the nonconvex case. In the convex case

wedges are bounded by straight line segments and are convex. The wedges arising for

nonconvex polyhedra are bounded by hyperbolic segments and are nonconvex. The

absence of convexity considerably complicates the procedure. However, an analogy can

be drawn with a similar problem in 2-space. Lee and Preparata observed that the shor-

test path problem can be considerably simplified if the paths are shown to be monotonic,

that is, they travel in essentially one direction [LP84]. We say that paths on a

polyhedron are monotonic if each edge is traversed in only one direction. Shortest.paths

on a polyhedron may not be monotonic, but we can mimic monotonicity by imagining

that each edge is split into two copies, one copy is associated with the paths crossing the

edge from the left, and the other with paths crossing from the right. This technique, d
which we called structured monotonicity, increases the number of wedges somewhat but

significantly decreases the processing time for each wedge.

After explaining notation and representational preliminaries in Section 2, we

describe structured monotonicity in Section 3. In Section 4 we describe the algorithm

for the monotonic case, and in Section 5 describes how to convert the monotonic solution Y Codes

to a general solution.

Di t - |C

3

2. Prelimlnarim

The polyhedron consists of a set of vertices V, edges E and faces F. S denotes the

set of source points. We assume that the polyhedron is represented so that standard

enumeration tasks can be performed efficiently, such as cyclically listing the vertices and

edges incident on a face [PM83]. For the purpose of simplifying our exposition we make

two additional assumptions. First, we assume that the faces of the polyhedron have

been triangulated. This can be performed in O(m log m) time per face where m ts the

degree of the face [GJ78. Second, we assume that the source points lie on (possibly

trivial) vertices of the polyhedron. This can be accomplished by adding new edges that

connect each source with the vertices of its enclosing face. Thus we have S C V, and all

the sets V, E and F are 0(n) in size.

Each face of the polyhedron is associated with a 2-dimensional coordinate system.

If a face f2 is adjacent to a face f, at an edge e, then the length of a path passing from f,

to f2 is unaffected by the angle formed between the faces at e. It is easiest to view a

path between two faces by unfolding the faces about e so that they lie on a common

plane. This operation of unfolding is called the planar unfolding of f, and f2, and can be

generalized to a chain of faces. To facilitate distance computation, shortest paths are

typically represented by their planar unfolding with respect to their destination. The

conversion from the planar unfolding to a path on the surface of the polyhedron Is

straightforward.

As mentioned earlier, when considering the monotonic form of the shortest path

problem, an edge e incident on two faces f, and f2 is treated as two separate objects. In

this case, we distinguish between an edge e on fl, which carries paths from f, to f2 and

the complement edge e on f2 that carries paths from f2 to f,. Paths are considered to be

directed outwards from the source points.

The line segment between two points on the plane x and y is denoted xy and the

Euclidean length of this path is denoted (xyt. We will be considering weighted points,

that is, a point x and an associated nonnegative real number d. The weighted distance is

_ -the distance to such a point plus the associated weight.

3. Overview of the Algorithm

A geodesic is a path on the polyhedron that is locally a shortest path. Shortest

paths are all geodesics, but the converse need not hold. The following properties of shor-
test paths and geodesics of finite length are easy to verify.

(1) The restriction of a shortest path to a face is a single line segment. The res-

triction of a geodesic to a race is a set of line segments.

4

(2) A geodesic passes through the interior of an edge so that the planar unfolding

of the shortest path is a line.

To see how geodesics traverse vertices, consider a vertex v on the polyhedron and

let f,, f2 , ... , ft be the faces incident on v. Let 01 be the angle formed by the edges

incident on v in fl, and let 0 be the sum of these angles. The angle a formed by a path

passing through v can be defined to be the minimum of the sums of angles clockwise

about v and counterclockwise about v (see Fig. 3.1a).

'

Fig. 3.1

This angle is at most 0/2. If c is less than w, then by unfolding the faces on this side of

v, we can easily find a shorter path in some neighborhood about v. From this observa-

tion we have

(3) A geodesic traversing a vertex forms an angle about the vertex that is greater

than or equal to 7r.

These three properties fully characterize the geodesics, but for our purposes, it will

simplify the presentation to weaken the definition. We define a geodesic as a path satis-

fying properties (1) and (2), but allow them to bend at arbitrary angles as they traverse

vertices. Note that in the case of convex polyhedra, the sum of angles about any (non-

trivial) vertex is strictly less than 21r, and hence (3) reduces to the statement that geo-

desics do not pass through vertices [cf. SS841.

The structure of the algorithm is the same as Dijkstra's algorithm-a priority

queue is maintained and events are processed in order of increasing distance, until no

events remain. To represent the distance from the nearest source to some reition of a

face, notice that the shortest path to a point is determined by the sequence of edges and

vertices through which the path travels. Since source points are themselves vertices, this

sequence determines the starting source point. We may partition each face of the

polyhedron into regions within which shortest paths traverse the same sequence of

discrete components. We will show that there are O(n2) regions. The final output of our

algorithm is this partition. The Voronoi cell for each source is the disjoint union of of

the regions originating from that source.

5

The first observation needed in developing an efficient algorithm is that, for the

purposes of Dijkstra's algorithm, we only need to maintain the distance to each vertex

and edge, and not to each point on the interior of the face. This reduces a 2- ,mensional

problem to a simpler 1-dimensional problem.

To see how to succinctly represent the distance to an edge, considt a subset of

points b on an edge e within which the shortest paths traverse the same ;equence of

edges and vertices. Consider the planar unfolding of this sequence with respect to e.

Let o be the last vertex on the on this sequence before arriving at e (see Fig. 3.2a). Note

that the rays from o to b pass through the interior of the subsequent edges. By observa-

tions (1) and (2), the planar unfolding of the shortest path to a point x on b is the shor-

test path from the source to o followed by the straight line joining o to x. Let d be the

length of the shortest path from the source to the o. The distance from the source to x

is just I ox I + d, which is the distance from x to the point o weighted by d. For the

purpose of defining the distance from the source to x, we only need to record the posi-

tion of the origin o relative to e, the base b, and the weight d. We define a wedge w to

be the quadruple <o,b,d,e>. A wedge is connected if its base is connected. A wedge is

linear if passes through a vertex of e. Wedges are related to the notion of funnels

appearing in [LP84].

X

Fig. 3.2 Planar Unfolding of a Path and a Wedge

The algorithm extends wedges from face to face by extending the rays bounding

the wedge at its origin. When wedges overlap the algorithm trims their bases by their

proximity to the nearer origin (see Fig 3.2b). The boundary between two wedges Is

defined by the bisector between the wedge origins (where distances are weighted). Thus

this bisector is a hyperbolic segment that may degenerate to a line segment (when origin

weights are equal) or may be empty (when the difference in origin weights exceeds the

distance between origins).

The fact that the bisector is a hyperbola, implies that the resulting regions are not

convex, and hence, the base of a given wedge may not be connected. Cases can be

constructed in which wedges have bases with O(n) components. This significantly com-

plicates any algorithm that explicitly constructs the bases. To overcome this difficulty

we solve the following modification of the shortest path problem:

Monotonic Shortest Path Problem:

For each point x on an edge e on a face f, determine the shortest geodesic

from a source to x that approaches x from within f.

In this definition we allow the geodesic to pass through a vertex of e. For example, in

Fig. 3.3, the paths from s, and s2 to x are considered in the monotonic problem for e on

f,. The paths from s2 and s3 would be considered in the monotonic problem for e on f2.
e

Fig. 3.3 Monotonic Shortest Paths

Since each edge lies on two faces, once the monotonic problem has been solved, we can

determine true shortest path to x by taking the shorter of the two monotonic paths.

One way to visualize the monotonic paths is to imagine that a barrier is placed

along the interior portion of each edge. The monotonic shortest path to a point x on

edge e is the shortest path that is allowed to pm through every barrier except the bar-

rier on e. It is easy to prove that this path will be a geodesic under our definition. The

monotonic shortest path to a vertex is the true shortest path. If x lies on e at distance

d, from a vertex of e, and e is distance d2 from the nearest source, then with our weaker

definition of a geodesic there is a geodesic to x of length at most d, + d2 . Thus the

monotonic distance to every point on an edge is finite, and the distance function is con-

tinuous. The motivation behind defining the monotonic problem is given in the next

lemma.

Lemma 3.1 The bases of wedges arising in the monotonic problem are connected.

7

Proof

The proof is by induction on the number of edges traversed by the wedge. A

degenerate wedge whose base equals its origin is trivially connected. Consider a wedge

whose base lies on an edge e on face f. The wedge enters the face through one of f's

other edges or vertices. The intersection of the wedge with this region of entry is a sub-

set of a connected base by induction. At most one wedge on e can enter through this

region since wedge bases do not overlap.

Suppose to the contrary, that the wedge is not connected. From the above com-

ments and the fact that wedges cover e, there must be two wedges whose planar unfold-

ings intersect each other (see Fig. 3.4).

Fig. 3.4

Since f is convex, this intersection occurs within f. There exist points x, and x2 lying on

the bases of the intersecting wedges having origins o, and 0 2 respectively whose shortest

geodesics intersect within f at some nonzero angle. However, this leads to an immediate

contradiction by constructing shorter paths through f from x, to o. and vice versa. This

implies that there exists a shorter geodesic that approaches x from within f.

By introducing structured monotonicity we have simplified the structure of the

wedges, but at what cost to the number of wedges that need to be processed? Our next

lemma establishes that the total number of wedges is essentially quadratic in the size of
the polyhedron, which is true for the general case also.

'I Lemma 3.2 The number of wedges incident on a given edge in the monotonic prob-

lem is O(n), and hence the total number of wedges is O(n 2).

Proof

~Consider the set of wedges incident on one side of an edge e. Each wedge origin is

a vertex. By arbitrarily selecting one of possibly many shortest paths to a vertex (as our

algorithm does) we may consider the path to be unique. Thus, if two distinct wedges

L -~

8

share a common origin, then somewhere between the common origin and e the wedges

pass on different sides of a vertex v after passing through a face f incident on v. No

other pairs of wedges sharing a common origin can be first separated by v while passing

through f, since this would imply that two shortest geodesics cross each other at some

nonzero angle within f. In Lemma 3.1 we showed that this cannot happen.

It follows that the number of wedges incident on e is bounded by the number of

origins plus the number of pairs (v,f) where v is incident on f. The number of origins is

bounded by the number of vertices, and the number of pairs (v,f) is bounded by twice

the number of edges. Thus there are O(n) wedges on e.

ED

4. Monotonic Shortest Path Algorithm

In this section we describe the algorithm for the monotonic shortest path problem.

The algorithm is based on Dijkstra's algorithm, where wedges are used to store the dis-

tance function.

The algorithm is controlled by a priority queue with entries ordered by distance.
We assume that the operations insert, extract-min, delete and change-priority can be

performed in O(log n) time each [AH74]. We refer to queue entries as events. We distin-

guish two types events: edge-events correspond to the extension of a wedge across one

edge to another and vertex-events correspond to the arrival of a wedge at a vertex. The

associated distance of an edge-event is the least weighted distance from the wedge origin

to its base, and the distance of a vertex event is the weighted distance from the origin to

the vertex.

bIitially the priority queue contains a vertex-event at distance 0 for each of the

source points. For each of the remaining vertices a vertex-event is enqueued at an

infinite distance. As our knowledge of the distance to the vertex improves, the priority

of this entry is updated.

Consider the case when a vertex-event is removed from the queue. For each face

incident on the vertex we create a new wedge for each of the edges of this face. The

base of each of these wedges is the edge itself. For edges incident on v this is a linear

wedge. We proceed to the trimming procedure described below. (In the case we have

arrived at the vertex from a particular direction, in contrast to the case that the vertex

is a source point, then we could limit the extension to the angles given in observation

(3). This improvement does not affect the asymptotic running time of the algorithm,
but simplifies the processing of convex vertices.)

When an edge-event is removed from the queue a new wedge extending the current

wedge is generated. If the originating wedge is incident on an edge e on a face fl, and f2

is the opposing face on e then new wedges are generated for the other edges on f2 (see

Fig. 4.1). The original wedge is the parent of the generated wedge. If the bases of the

new wedges overlap with existing wedges, the wedge is trimmed.

f

Fig. 4.1 Wedge Extension

Let e be the edge on which the trimming take place. The trimming process begins

by determining the relative position of the newly created wedge w with respect to the

other wedges on e. Because wedges incident on e do not cross over each other within f,

these wedges are naturally ordered as their parent wedges are ordered around f. This

ordering allows us to find the relative position of the new wedge in O(log n) time by

bisection. Let wL and wR be the wedges to the left and right of w, and let. z be a point

between the bases of WL and wR. By working outward to the left and right along'e, we

trim back neighboring wedges.

For concreteness consider the case of trimming in the leftward direction (see Fig.

4.2). The extent of the trimming is limited P. priori to the base of the newly extended

wedge. We compute the set of points on e that are closer to one wedge origin than

another (weighted distance) by computing the intersection of e and the bisecting hyper-

bola defined by the origins. If every point on the base of wL is closer to the origin of w

than to the origin of wL then wL is deleted. We let wL be the next wedge to the left and

repeat the process. Otherwise, find the point x on the base of wL such that every point

to the right of x is closer to w's origin than to WL'S origin. The neighboring base is

trimmed so that it contains only the points that lie to the left of x. The left trimming

process terminates at this point and the region between x and z is made part of w's base.

Notice that the point x is equidistant from the two wedge origins between which it lies,

and wedge bases remain connected. Finally, if priority queue entries depended on the

points of a wedge that were deleted or trimmed, then these entries are reevaluated.

10

Ai

Fig. 4.2 Wedge Trimming

After the new wedge has been established and assuming that it is nonempty, the

following priority queue entries are created. The closest point in the wedge base to the

origin is enqueued with its weighted distance to the origin. This event is an edge-event.

If the wedge base contains any vertices and the weighted distance from the vertex to the

wedge origin is less than the best known distance to the vertex, then the distance to the

vertex is updated, and the priority queue entry associated with the vertex is updated

with this smaller distance. Note that there is only one priority queue entry for each ver-

tex and its distance never increases.

Once the relative position of the new wedge has been determined, the cost of trim-

ming wedges is proportional to the number of wedges deleted. This is turn is bounded

by the number of wedges created, which we will show to be 0(n 2) overall. Modifying

priority queue entries may require 0(n 2log n) time overall. It follows that the overall

cost of trimming is O(n 2log n).

The complexity and correctness of the algorithm are derived from the following

invariant:

Lemma 4.1 Let d be the distance of the next event in the priority queue. Then

(1) (wedges correspond to geodesics) if a wedge w is created by the algorithm, and a

point x lies on w's base, then there is a geodesic to x from some source whose dis-

tance is the weighted distance from x to the origin of w,

(2) (wedges cover all points up to distance d) for a point x which is at distance a < d

from the nearest source and which is on the interior of an edge e, there is a wedge

w whose base contains x such that the weighted distance from x to the origin of w

is d, and w gives the planar unfolding of the shortest path to x,

(3) (only true wedges are extended) if a wedge w has been extended through an edge e,

and x is the closest point on the base of w to its origin at the time of extension,

then w is the planar unfolding of the shorest geodesic to x from this side of e, and

0 1§1 191 11 1

11

(4) (shortest paths to vertices are correct up to distance d) If a vertex v has been

labeled with distance a < d then the distance from the nearest source to v is d.

Proof

The proof is by induction on the number of entries extracted from the priority

queue and noting that priority queue entries are extracted in nondecreasing order of dis-

tance. Item (1) follows simply from the fact that wedges are extended by unfolding

faces, Just as geodesics are.

To show (2) consider such a point x. The point y at which the shortest path from

x to the nearest source intersects another edge or vertex is at a strictly closer distance to

the nearest source. By induction, some wedge contains the point y. Since the distance

to y Is less than d this wedge has already been extended. Thus, some wedge contains x.

By (1), this wedge must correspond to a true geodesic, and since the path through y is

hypothesized to be the shortest geodesic, the wedge extended through y must contain x.

To show (3), suppose that x is the closest point on edge e to the wedge origin at the

time of extension. By (1) there exists a path from x to some source whose distance is the

weighted distance from x to this origin. By (2) there is no shorter path to any source.

Thus there is at least one point of the wedge that will survive trimming, and so the

wedge is permanent.

Item (4) follows from (1) and (2) and continuity of distances.

ED

The correctness of the algorithm follows from (2) and (4). The complexity of the

algorithm follows from the remarks made earlier on the total number of wedges, together

with (3) that shows that no effort is wasted. extending wedges that are eventually

deleted.

5. Converting the Monotonic Solution to a Voronoi Diagram

In this section we extend the monotonic shortest path information for the edges

into a Voronoi diagram on each face. Since source points are located at vertices, the

shortest path to a point within a face f must pass through a vertex or an edge of f.

Thus each Vorono cell within f intersects the boundary of f. Because distances are

weighted, this problem is closely related to the problem of computing generalized Voro-

noi diagrams [LD81, K17g) and in particular computing Voronoi diagrams for circles

'ShS5]. Our problem is not directly reducible to any existing Voronoi diagram problems

because

12

(1) the restricting nature of a wedge implies that the shortest path to a wedge ori-

gin is not necessarily a straight line, and

(2) the distances already computed for each edge provide significant additional

information.

However, our techniques are essentially the same as existing methods for computing

Voronoi diagrams for circles. Our primary task is to show that the essential properties

of circle Voronoi diagrams hold in our case. The presentation will largely follow that of

Sharir [Sh85]. Unlike Sharir's algorithm which runs in O(n logan) time, ours requires

only in O(n log n) time due to observation (2). After applying our procedure to each of

O(n) faces we have O(n2log n) total complexity.

Consider face f surrounded by the edges e,, e2 and e3. All shortest paths to points

in f are conveyed by the wedges arising from monotonic shortest paths to el passing

through the adjacent face or by the vertices of f (which can be thought of as degenerate

wedges whose origin and base coincide at a single point). The bases of these wedges par-

tition the boundary of f. Let W = (wI, w2, ...) be this set of O(n) wedges ordered cycli-

cally about f. Except for its base, each wedge lies exterior to f. Define the distance from

a point x in f to a wedge origin ol to be the length of the shortest path starting at x,

then passing through the base of w1 , then to o plus the weight of o1. This path either

consists of a single straight line segment from x to p, or else a pair line segments, one

from x to an endpoint of the base of w, and another from this endpoint to o. The Voro-

noi cell of a wedge w1, V1, is the set of points of f that are as close to ol as to any origin

(given this modified definition of distance) (see Fig. 5.1). The Voronoi region of a subset

of wedges S, V(S), is the union of the Voronoi cells of S.

Let Z = {zj, z2, ...) be the O(n) wedge endpoints. For each such point z lying

between two wedges w, and w2 , the continuity of distances implies that the weighted

distances from z to the corresponding origins, o, and o2, are equal. That is, z lies on the

bisector between the origins. Call this (weighted) distance the weight of a point in Z.

Ve enlarge the set W by creating new (trivial) wedges without lateral boundaries whose

origins and bases are the points of. Z. We call these end-wedges.

13

VLL

''' VVe"

0?-
" W, . C, .

Fig. 5.1 Voronol Diagram with Wedges

Consider a subset of wedges S C W such that if w, is in S, then its associated end-

wedges are also in S. Because of the end-wedges, the distance from a point x to the

nearest origin in S is a straight line. The distance from x to the nearest origin Is no less

after the inclusion of the end-wedges, thus these wedges do not affect the lengths of

shortest paths. (In fact, in the final diagram the cells of end-wedges will be empty

because shortest paths are geodesics and hence pass through the edge in a straight line.

The end-wedges serve a function simply in guaranteeing that intermediate Voronol

diagrams constructed from subsets of W have a nice structure.)

We employ the standard divide-and-conquer technique for computing the Voronoi

diagram [SH75, Sh85j. At each stage we compute the Voronoi diagram of a set of

wedges. 'This set is split into two subsets L and R of approximately equal size. Of

course, there is no global notion of "left" and "right" assumed here; it is convenient to

use these terms to describe the algorithm. The original set S and the subsets L and R

satisfy the following properties:

14

(I) they contain the end-wedges associated with each wedge base,

(ii) the bases form a connected subchain about f,

(iii) (for L and R) either all of the wedges lie on a single edge of f, or the set of

edges on which L lie and the set of edges on which R lie are disjoint.

It is easy to see that a divide-and-conquer algorithm can be designed that satisfies these

conditions. For example, at the highest level of the recursion the set L consist of the

wedges of e,, and R consists of the wedges of e. and e3 . At the second level of the recur-

sion R is split into two sets consisting of the wedges of e2 and the wedges of e3

separately. After this, the divide-and-conquer proceeds by partitioning each edge into

connected subsets of approximately equal size.

According to the standard procedure for Voronoi diagrams, the Voronoi cells of L

and R are computed recursively, and the contour separating V(L) from V(R) is com-

puted. Portions of V(L) lying to the right of the contour are discarded as are portions of

V(R) lying to the left of the contour. Note that, because the diagram is restricted to f,

the contour may be disconnected. We describe later how this is handled.

In general, each Voronoi vertex has at least degree 3. It is possible that there are

Voronoi vertices with degree greater than 3. By applying an infinitesimal transformation

if needed, we can assume that there are no such degeneracies in the diagram. That is,

there are no points that are equidistant from four wedge origins. This implies that each

vertex of the Voronol diagram is of at most degree three. The topology of the diagram

may be altered in the process, but distances are only affected infinitesimally.

Property (I) implies that L and R may contain one or two common end-wedges

where they meet. Normally, when constructing Voronol diagrams by a divide-and-

conquer method it is assumed that sets are disjoint. Although this case can be handled

by describing a slightly more complex algorithm for tracing the contour, we suggest a

simple fix that alters the diagram only infinitesimally. We separate the shared end-

wedge points infinitesimally, and treat these points as though they were distinct. One

point is moved slightly to the right and is considered a part of R and the other is moved

slightly to the left and is consider a p -t of L.

The following properties of the Voronoi diagrams arising in our case are relevant to

its construction. These properties are standard for generalized Voronoi diagrams, and

similar arguments appear in [Sh8S5].

(a) Each component of the contour is a simple curve. [This follows because the con-

tour as part of the diagram is incident on vertices of degree at most three. But

exactly two edges of a vertex of degree three can separate the regions V(L) and

V(R).]

15

(b) Voronol cells are star-shaped with respect to their origin, that Is, If x lies on V1,

then the straight line from x to ol does not pass through the interior of any other

Voronoi cells. [We have shown that the end-wedges insure that the shortest path

to the origin of the containing cell is a straight line. Suppose that the line from x

to ol passes through a point y in the interior of another cell Vj. Then there is a

shorter path from x to oj passing through y, a contradiction.]

(c) Each connected component of the contour has endpoints on the boundary of f.

[Since the contour partitions f into two possibly disconnected regions, any com-

ponent with no endpoint on the boundary of f must be a cycle lying entirely within

f. However, this violates (b) because the origins lie on r's exterior.]

(d) The Voronoi diagram is the union of bisector segments between weighted points,

that is, hyperbolic segments whose foci are origins or straight line segments.

(e) No two edges of the Voronoi diagram are tangent, and no edge of any cell is

tangent to a ray emanating from the cell's origin. [To see the first observation,

suppose that two Voronoi edges are tangent. Then there are two edges in the same

cell that are tangent. Consider the region of the Voronoi cell lying on the opposite

side from the wedge origin. This region contains a neighborhood of some point in

its interior. However, not all of the straight line segments connecting the points in

this neighborhood to the origin can pass through the tangent point, violating (b).

The second observation follows from (d) and noting that no point on a hyperbola

can be tangent to a ray emanating from one of its foci.]

(f) The Voronoi diagram of a set of m wedges contains O(m) edges. [This follows from

Euler's formula and the fact that Voronoi vertices have degree 3.]

Suppose that we are at the stage of building the diagram for a subset of wedges, S,

where I S I = m. We identify two principle tasks:

(1) determine O(m) points such that each connected component of the contour

has one of these points as an endpoint and

(2) trace each of the components of the contour.

We first consider the task of determining the contour endpoints. Note that L and

R lie on some subset of the edges of f. By property (b) it follows that each connected

component of the contour has at least one of its endpoints on an edge that is in this sub-

set. Hence we may limit our search to this subset of edges. From condition (iii) above,

either L and R are on the same edge, or else they lie on distinct edges. First consider

the case when L and R lie on the same edge. One of the contour's endpoints is the

bisector between the leftmost point of R and the rightmost point of L. (These points

LMm

16

arose from the infinitesimal end-wedge separation mentioned earlier.) By property (b),

there can be no other contour end points on this edge.

Next consider when L and R lie on different edges. For concreteness, say that the

wedges of R lie entirely on one edge e,, and the wedges of L lie on one or both of the

other edges of f, e. and e.. We describe the procedure for determining the endpoints of

the contour that lie on el, and the cases for e. and e follow analogously. Each contour

endpoint is equidistant from the nearest origin in L and the nearest origin in R. Con-

sider the wedges lying on opposite sides of el, that were constructed in the previous sec-

tion. R consists of a subset of the wedges lying outside of f and s6me additional end-

wedges. Let R" denote the subset of R with end-wedges removed. All of the wedges on

e, lying inside of f arose from the extension of a wedge lying outside e2 or e3 or from the

vertices of f. Let L" denote the subset of wedges on el lying inside of f that arose from

_ the extension of wedges in L. By the definition of wedge extension given in the previous

section, the distance from a point on e, to an origin of L* is equal to the distance to the

corresponding origin of L (see Fig. 5.2).

Fig. 5.2 Determining Contour Endpoints

The contour endpoints on el are the points equidistant between the wedges R" and

L*. To find these points points we join the two copies of e, created by the monotonic

problem and consider each of the O(m) intervals on e, where a wedge base from R* over-

laps a base from L*. Within each interval the nearest neighbors in R and L are uniquely

determined. For each interval we construct the bisecting hyperbola between the respec-

tive origins. The points at which the hyperbola intersects e, within the overlap interval

art are equidistant from their nearest origins in L and R. Therefore, these points are

contour endpoints. Each overlap interval may contribute at most 2 points. Hence the

number of contour endpoints (and the number of contour components) is O(m). The

fact that this set of endpoints includes at least one endpoint from each contour com-

ponent follows from the remarks made above in a straightforward manner.

17

The task remaining is to trace each component of the contour. The contour need

not be monotone and Voronoi regions may not be convex, as is true for standard Voro-

noi diagrams, so we use a standard technique from generalized Voronoi diagrams to aid

in the tracing process. We draw 8poke., line segments emanating from the origin of a

Voronoi cell to each of the the Voronoi vertices of the cell (see [Ki7, Sh851). Because

the cells are star-shaped with respect to the origins, this partitions each Voronoi cell into

Voronoi 8ubcell. that are bounded by at most 4 sides: an edge of f, two spokes, and a

hyperbolic bisector. Determining the intersection of a hyperbolic curve and such a sub-

cell can be carried out in constant time. Each Voronoi cell is the union of its subsells.

\,1 IN

\ '•

Fig. 5.3 Voronoi Region with Spokes

The tracing proceeds in the standard fashion starting with a contour endpoint in a

subcell of a wedge w, in L and a subcell of a wedge w2 in R. Ignoring degeneracies con-

tour endpoints have degree 1. We follow the bisector between the origins until it reaches.

the boundary of one of the containing subcells. With the addition of spokes the intersec-

tion with the boundary of a subcell can be determined in constant time. By eliminating

degeneracies as mentioned above we may assume that the contour reaches the boundary

in the interior of a Voronoi edge. Suppose for concreteness that the boundary lies

between subcells for w2 and w., both in R. Property (e) guarantees that the contour will

indeed enter w3. We continue along the bisector betweenI o, and o3. The process is

repeated until an edge of f is encountered.

The algorithm for constructing the Voronoi diagram is summarized below:

Algorithm 5.1 Compute the Voronoi diagram of a set of wedges W lying exterior to

and covering the boundary of a face f.

1. Enlarge W to include the end-wedges. Each end-wedge haA an origin and a base

coinciding at the point where adjacent wedge bases touch.

2. Perform steps 3-6 recursively in divide-and-conquer fashion. Let S=W initially.

18

3. Divide the connected set of wedges S into two connected sets L and R satisfying

properties (i)-(iii) listed above. Recursively compute the Voronol diagrams of L and

R.

4. Construct contour endpoints E as follows for each edge e of f on which either L or

R lie:

4a. If L and R both lie on e, then E contains the point at which the rightmost

base of L touches the leftmost base of R.

4b. If L and R lie on different edges, then B is constructed by considering the

overlapping wedge pairs on e formed by L, R or their extensions through f. E

contains the points within each overlap region at which the bisecting hyper-

bola of the corresponding origins intersects e.

5. For each unvisited point in E, trace the contour in standard Voronoi fashion.

Spokes are used to simplify the task of searching for the next intersection of the

contour with a Voronol edge.

6. Discard the portions of Vor(L) and Vor(R) lying on opposite sides of the contour

and construct spokes to the newly created Voronoi vertices.

7. Discard the spokes.

The correctness and O(m) complexity of the tracing procedure follow from the dis-

cussion above. The complexity of finding the contour endpoints is clearly linear, hence

the complexity of the divide-and-conquer algorithm is O(n log n) per face because there

are O(n) wedges on each face. This implies that the complexity of constructing the

Voronoi diagram over the entire polyhedron is 0(n2og n). The number of hyperbolic

arcs in the diagram is O(n) per face and so the total amount of storage required to store

the diagram is O(n2).

Finally, we consider how to answer a shorest path query. With each wedge w we

maintain a pointer to the parent wedge whose extension is w. This imposes a tree struc-

ture on the set of wedges, called the wedge-tree. Given a query point, we use standard

point location techniques to determine the Voronol cell containing the point [Pr81, Co83]
in O(log n) time. The distance to the point can be determined in constant time by com-

puting the weighted distance to the associated wedge origin. The shortest path can be

given in O(k) time, where k is the number of vertices and edges traversed by the path.
by tracing back the path in the wedge-tree and folding the path over the polyhedron.

0(n) space suffices to store the Voronol diagram for each face, thus altogether 0(n 2)

storage is used by the algorithm.

,MU

References

[AH74] Aho, A. V., Hopcroft, J. E. and Ullman, J. D. The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

[Co83] Cole, R. "Searching and Storing Similar Lists," Tech. Rept. 88, Courant
Institute, (Oct 1083).

[FA841 Franklin, W. R. and Akman, V. "Shortest Paths Between Source and Goal
Points Located On/Mound a Convex Polyhedron," 22nd Allerton Conference
on Communication, Control and Computing, 1984

[GJ78] Garey, M. R., Johnson, D. S., Preparata, F. P. and Tarjan, R. E. "Triangu-
lating a Simple Polygon," Inf. Proc. Letters, 7 (1978); 175-179.

[Ki7O] Kirkpatrick, D. G. "Efficient Computation of Continuous Skeletons," in 20th
IEEE Foundations of Comp. Sci. Symposium (1979), pp. 18-27.

[Ki83] Kirkpatrick, D. G. "Optimal Search in Planar Subdivisions," SIAM J. Corn-
put., 12 (1983), 28-35.

[LD81] Lee, D. T. and Drysdale, R. L. "Generalization of Voronoi Diagrams in the
Plane," SIAM J. Comput., 10 (1981), 73-87.

[Le78] Lee, D. T. "Proximity and Reachability in the Plane," Ph.D. Thesis, Tech.
Rept. ACT-12, Coordinated Science Laboratory, Univ of Illinois, (Nov 1978).

[LP84] Lee, D. T. and Preparata, F. P. "Euclidean Shortest Paths in the Presence
of Rectilinear Boundaries," Networks, 14 (1984), 393-410.

[LW791 Lozano-Perez, T. and Wesley, M. A. "An Algorithm for Planning Collision-
Free Paths Among Polyhedral Obstacles," Commun. ACM, 22 (1979), 560-
570.

[MM8S] Mitchell, J., Mount, D. M. and Papdimitriou, C. H. "The Discrete Geodesic
Problem," Manuscript, Stanford University, submitted SIAM J. Comput...
1985.

I.Mo84] Mount. D. M. "On Finding Shortest Paths on Convex Polyhedra." Tech.
Rept. 120, Center for Automation Research, University of Maryland, (May
1085).

[OS84] O'Rourke, J., Suri, S. and Booth, H. "Shortest Paths on Polyhedral Sur-
faces," Manuscript, Johns Hopkins University, 1984.

[PM83] Preparata, F. P. and Muller, D. E. "Finding the Intersection of n Hair-
Spaces in Time O(n log n)," Theoret. Comp. Sci.. 8 (1970), 45-55.

[Pr8l] Preparata, F. P. "A New Approach to Planar Point Location." S1.4,% J.
Comput., 10 (1981), 473-482.

UNCL&SSITTfl
gCumTv CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION III. 4ESTRICTIVE MARK(INGS

UNCLASSIFE N/A
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIOUTIONAVAI LAB ILITV Of REPORT

N/A Approved for public release;
2OECLASSIPICATION100OWNGRAOING SCNIOULE distribution unlimited

N/A
P ERFORMING ORGANIZATION REPORT NUMBERIS) S. MO Nt~IZATI ON REPORT USR)

G& NAME OF P9RFORMING ORGANIZATION IL OFFICE SYMBOL 7@. NAME OF MONITORING ORGANIZATION

11tappiceble)

University of Maryland N/A Air Force office of Scientific Res.
f. 43 msi":: If'~~ , d . 1 ZIP Code) 7b. ADDRESS (Cay Slee end ZIP code)

* Center for Automation Research Bolling Air Force Base
College Park, MD 20742 Washington, DC 20332

*s NAVIE OP PUNIN1G,SPONSOMING 4ba. OFFICE SYMB01- .g PROCUREMENT iNSTRUMENT #OrNTjFhCAT.ON NU.MBER
".'NIZATION f pdCbt

I - F49620-83-C-0082
8c& ADOMISS 104t. Slat ond ZIP Code) 10. SOURCE OF P UNOING NO$. _____________

PROGRAM PROJECT TASK WORK UNIT

V i~RNAAGRAMS ON THE SURFACE OF A NON

12. PPASOJNAL AUTMORISI

Did M. Mount 13.IMCORE 1 AEORPOTr'.M. e,1=

%3 Tv* 13b PAp oei 4 0T FRPR Yr o.Dy 3 GE r(-.%r

Technical I PROM _____ To M/Ay 1985 21

t? COSATI CODS IS. SUBJECT TERMS IceaIveDI. 0010P Irw it nceamuI and identify by block nmber)I

FIEL GROUP $s Ga.

t'I ABSTRACT lCon uto. on wipue atnecipgigr gnd Identfp y blockb nme,

We present an algorithm that computes the Voronoi diagram of a set of
points lying on the surface of a possibly nonconvex polyhedron. Distances
are measured in the Eucli ean metric along the surface of the polyhedron.
The algorithm runs in O(n log n) time and requires 0(n2) space to store the
final data structure, where n is the maximum of the number of edges and souz e
points on the polyhedron. This algorithm generalizes or improves the runnin
times of a number of shortest path problems both on polyhedra and in the

* plane amidst polygonal obstacles. By applying standard algorithms for point
location, we can determine the distance from a query point to the nearest
source in O(log n) time and can list the shortest path in 0(k + log n) time,
where k is the number of faces traversed by the path. The algorithm achieves
its efficiency by a novel method of searching the polyhedron's surface.

20 OISTRIBUT1OPVAVAILA8ILITY OP ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION

UtICLASBIPISEDIU% LIMITEO 9) SAME AS RPT. C:TIC USERS 03 UNCLASSIFIED
no. 'stq ')P RES2PONSISLE I)I0VIOUAL" I22b TILIP401 NUMBER1 22c orF-.r.SYMBOL

inluide Ants Cadet

FOm 1473.83 APR EDI TIOF4OP I JANV 72 is 0650 IAT6 U..JNCLASSIFIED
SECURITY CLASSIF ICATION4 OP THIS PAGE

20

[SH75] Shamos, M. 1. and Hoey, D. "Closest-Point Problems," in 16th IEEE Foun-
dations of Comp. Sci. Symposium (1075), pp. 151-162.

[Sh851 Sharir, M. "Intersection and Closest-pair Problems for a Set of Planar
Discs," SIAM J. Comput., 14 (1085), 448-468.

[SS841 Sharir, M. and Schorr, A. "O 1n Shortest Paths in Polyhedral Spaces," in 16th
A CM Sy'mposium on Theory, of Computing (1084), pp. 144-153.

4

